Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1564443

ABSTRACT

For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication;it is a key step during cell migration;it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.

2.
Sci Rep ; 11(1): 18847, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434148

ABSTRACT

As the SARS-CoV-2 has spread and the pandemic has dragged on, the virus continued to evolve rapidly resulting in the emergence of new highly transmissible variants that can be of public health concern. The evolutionary mechanisms that drove this rapid diversity are not well understood but neutral evolution should open the first insight. The neutral theory of evolution states that most mutations in the nucleic acid sequences are random and they can be fixed or disappear by purifying selection. Herein, we performed a neutrality test to better understand the selective pressures exerted over SARS-CoV-2 spike protein from homologue proteins of Betacoronavirus, as well as to the spikes from human clinical isolates of the virus. Specifically, Tyr and Asn have higher occurrence rates on the Receptor Binding Domain (RBD) and in the overall sequence of spike proteins of Betacoronavirus, whereas His and Arg have lower occurrence rates. The in vivo evolutionary phenomenon of SARS-CoV-2 shows that Glu, Lys, Phe, and Val have the highest probability of occurrence in the emergent viral particles. Amino acids that have higher occurrence than the expected by the neutral control, are favorable and are fixed in the sequence while the ones that have lower occurrence than expected, influence the stability and/or functionality of the protein. Our results show that most unique mutations either for SARS-CoV-2 or its variants of health concern are under selective pressures, which could be related either to the evasion of the immune system, increasing the virus' fitness or altering protein - protein interactions with host proteins. We explored the consequences of those selected mutations in the structure and protein - protein interaction with the receptor. Altogether all these forces have shaped the spike protein and the continually evolving variants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acids/chemistry , Amino Acids/genetics , Angiotensin-Converting Enzyme 2/chemistry , Betacoronavirus/genetics , Evolution, Molecular , Genetic Drift , Glycosylation , Humans , Models, Theoretical , Mutation , Protein Binding/genetics , Spike Glycoprotein, Coronavirus/chemistry
3.
Front Immunol ; 12: 631821, 2021.
Article in English | MEDLINE | ID: covidwho-1344260

ABSTRACT

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Subject(s)
Cell Death/immunology , Neutrophils/pathology , Apoptosis/immunology , Apoptosis Regulatory Proteins/metabolism , Autophagy/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Free Radicals/metabolism , Humans , Necroptosis/immunology , Necrosis/immunology , Necrosis/metabolism , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Pyroptosis/immunology , Receptors, Death Domain/metabolism
5.
Trends Immunol ; 41(10): 855, 2020 10.
Article in English | MEDLINE | ID: covidwho-709611
SELECTION OF CITATIONS
SEARCH DETAIL